16 research outputs found

    Enchondromas and atypical cartilaginous tumors at the proximal humerus treated with intralesional resection and bone cement filling with or without osteosynthesis: retrospective analysis of 42 cases with 6 years mean follow-up

    Get PDF
    Background: Enchondromas and atypical cartilaginous tumors (ACT) are often located at the proximal humerus. Most lesions can be followed conservatively, but surgical resection may alleviate pain, avoid pathological fractures, and prevent transformation into higher grade chondrosarcomas. Rigorous intralesional resection and filling with polymethylmethacrylate bone cement has been proposed for enchondromas but also for ACT, as an alternative for extralesional resection. We intended to analyze radiological, clinical, and functional outcome of this strategy and compare bone cement without osteosynthesis to bone cement compound osteosynthesis, which has not been analyzed so far. Methods: We retrospectively analyzed 42 consecutive patients (mean follow-up 73 months; range 8–224) after curettage and bone cement filling with or without osteosynthesis. Exclusion criteria were Ollier’s disease and cancellous bone filling. Twenty-five patients only received bone cement. Seventeen patients received additional proximal humerus plate for compound osteosynthesis to increase stability after curettage. Demographics and radiological and clinical outcome were analyzed including surgery time, blood loss, hospitalization, recurrences, and complications. An additional telephone interview at the final follow-up assessed postoperative satisfaction, pain, and function in the quick disabilities of the arm, shoulder, and hand (DASH) score and the Musculoskeletal Tumor Society (MSTS) score. Statistics included the Student T tests, Mann-Whitney U tests, and chi-square tests. Results: No osteosynthesis compared to compound osteosynthesis showed smaller tumors (4.2 (± 1.5) cm versus 6.6 (± 3.0) cm; p = 0.005) and smaller bone cement fillings after curettage (5.7 (± 2.1) cm versus 9.6 (± 3.2) cm; p = 0.0001). A score evaluating preoperative scalloping and soft-tissue extension did not significantly differ (1.9 (± 0.9) versus 2.0 (± 1.0); rating scale 0–4; p = 0.7). Both groups showed high satisfaction (9.2 (± 1.5) versus 9.2 (± 0.9); p = 0.5) and low pain (1.0(±1.7) versus 1.9(±1.8); p = 0.1) in a rating scale from 0 to 10. Clinical and functional outcome was excellent for both groups in the DASH score (6.0 (± 11.8) versus 11.0 (± 13.2); rating scale 0–100; p = 0.2) and the MSTS score (29.0 (± 1.7) versus 28.7 (± 1.1); rating scale 0–30; p = 0.3). One enchondroma recurrence was found in the group without osteosynthesis. Complications (one fracture and one intra-articular screw) were only detected after osteosynthesis. Osteosynthesis had longer surgery time (70 (± 21) min versus 127 (± 22) min; p < 0.0001), more blood loss (220 (± 130) ml versus 460 (± 210) ml; p < 0.0001), and longer stay in the hospital (6 (± 2) days versus 8 (± 2) days; p = 0.004). Conclusions: Intralesional tumor resection was oncologically safe and clinically successful with or without osteosynthesis. Osteosynthesis did not reduce the risk for fracture but was more invasive

    Surgical therapy of benign and low-grade malignant intramedullary chondroid lesions of the distal femur: intralesional resection and bone cement filling with or without osteosynthesis

    Get PDF
    Surgical treatment of benign and low-grade malignant intramedullary chondroid lesions at the distal femur is not well analyzed compared to higher-grade chondrosarcomas. Localization at the distal femur offers high biomechanical risks requiring sophisticated treatment strategy, but scientific guidelines are missing. We therefore wanted to analyze a series of equally treated patients with intralesional resection and bone cement filling with and without additional osteosynthesis. Twenty-two consecutive patients could be included with intralesional excision and filling with polymethylmethacrylate bone cement alone (n = 10) or with compound bone cement osteosynthesis using a locking compression plate (n = 12). Clinical and radiological outcome was retrospectively evaluated including tumor recurrences, complications, satisfaction, pain, and function. Mean follow-up was 55 months (range 7–159 months). Complication rate was generally high with lesion-associated fractures both in the osteosynthesis group (n = 2) and in the non-osteosynthesis group (n = 2). All fractures occurred in lesions that reached the diaphysis. No fractures were found in meta-epiphyseal lesions. No tumor recurrence was found until final follow-up. Clinical outcome was good to excellent for both groups, but patients with additional osteosynthesis had significantly longer surgery time, more blood loss, longer postoperative stay in the hospital, more complications, more pain, less satisfaction, and worse functional outcome. Intralesional resection strategy was oncologically safe without local recurrences but revealed high risk of biomechanical complications if the lesion reached the diaphysis with an equal fracture rate no matter whether osteosynthesis was used or not. Additional osteosynthesis significantly worsened final clinical outcome and had more overall complications. This study may help guide surgeons to avoid overtreatment with additional osteosynthesis after curettage and bone cement filling of intramedullary lesions of the distal femur. Meta-epiphyseal lesions will need additional osteosynthesis rarely, contrary to diaphyseal lesions with considerable cortical thinning

    Outcome of conservative and surgical treatment of enchondromas and atypical cartilaginous tumors of the long bones: retrospective analysis of 228 patients

    Get PDF
    Background: Sufficient data on outcome of patients with clinically and radiologically aggressive enchondromas and atypical cartilaginous tumors (ACT) is lacking. We therefore analyzed both conservatively and surgically treated patients with lesions, which were not distinguishable between benign enchondroma and low-grade malignant ACT based upon clinical and radiologic appearance. Methods: The series included 228 consecutive cases with a follow-up > 24 months to assess radiological, histological, and clinical outcome including recurrences and complications. Pain, satisfaction, functional limitations, and the musculoskeletal tumor society (MSTS) score were evaluated to judge both function and emotional acceptance at final follow-up. Results: Follow-up took place at a mean of 82 (median 75) months. The 228 patients all had comparable clinical and radiological findings. Of these, 153 patients were treated conservatively, while the other 75 patients underwent intralesional curettage. Besides clinical and radiological aggressiveness, most lesions were histologically judged as benign enchondromas. 9 cases were determined to be ACT, while the remaining 7 cases had indeterminate histology. After surgery, three patients developed a recurrence, and a further seven had complications of which six were related to osteosynthesis. Both groups had excellent and almost equal MSTS scores of 96 and 97%, respectively, but significantly less functional limitations were found in the non-surgery group. Further sub-analyses were performed to reduce selection bias. Sub-analysis of histologically diagnosed enchondromas in the surgery group found more pain, less function, and worse MSTS score compared to the non-surgery group. Sub-analysis of smaller lesions (< 4.4 cm) did not show significant differences. In contrast, larger lesions displayed significantly worse results after surgery compared to conservative treatment (enchondromas > 4.4 cm: MSTS score: 94.0% versus 97.3%, p = 0.007; pain 2.3 versus 0.8, p = 0.001). The majority of lesions treated surgically was filled with polymethylmethacrylate bone-cement, while the remainder was filled with cancellous-bone, without significant difference in clinical outcome. Conclusion: Feasibility of intralesional curettage strategies for symptomatic benign to low-grade malignant chondrogenic tumors was supported. Surgery, however, did not prove superior compared to conservative clinical and radiological observation. Due to the low risk of transformation into higher-grade tumors and better functional results, more lesions might just be observed if continuous follow-up is assured

    Retrospective analysis of 51 intralesionally treated cases with progressed giant cell tumor of the bone: local adjuvant use of hydrogen peroxide reduces the risk for tumor recurrence

    Get PDF
    Background: Giant cell tumor of the bone (GCT) has high local recurrence rates and the prognosis is hard to predict. We therefore retrospectively analyzed clinical outcome and recurrences of 51 GCT cases focusing on the effects of adjuvant local use of hydrogen peroxide. Methods: The series enclosed 51 advanced GCT cases of the upper and lower extremities (n = 27 Campanacci grade III; n = 24 grade II; n = 39 surgery at our institution, n = 12 elsewhere). Mean follow-up was 88.3 (± 62.0) months. Surgical details, histology, metastases, recurrences, and interview-based data on satisfaction and function including the Musculoskeletal Tumor Society (MSTS) score were evaluated. It was investigated whether hydrogen peroxide was additionally used or not to clean the tumor cavity after curettage as we hypothesized influence on recurrences. To analyze the underlying mechanisms, GCT-derived stromal cell lines were cultured in vitro and tested for cell viability and apoptosis after treatment with hydrogen peroxide. Statistical analysis was performed with Student’s t tests, analysis of variance (ANOVA) with post hoc testing, Mann-Whitney U tests, chi-square tests, Kaplan-Meier analysis, and multivariate Cox regression analysis. Results: The whole series had 21 recurrences (41%). Eleven recurrences were found (28%) after surgery at our institution. Kaplan-Meier analysis of cumulative recurrence-free survival revealed at 2 years follow-up 69% (72%, only our institution) and at 10 years follow-up 54% (68%, only our institution). Intralesional resection was performed by vigorous curettage, burring, and defect filling with either polymethylmethacrylate bone cement (n = 45) or cancellous bone from the iliac crest (n = 6). Univariate chi-square analysis showed significantly lower recurrence rate after bone cement filling (2.3-fold, p = 0.024). Cleaning of the lesion cavity with hydrogen peroxide significantly reduced recurrence rate (whole collective 2.9-fold, p = 0.004; our institution 2.8-fold, p = 0.04) and significantly increased cumulative recurrence-free survival rate (whole collective at 10 years follow-up 74% versus 31%, p = 0.002; our institution 79% versus 48%, p = 0.02) compared to cases without hydrogen peroxide treatment. In multivariate analysis, significant risk factors for recurrence were pathological fracture (hazard ratio 3.7; p = 0.04), high mitosis rate (hazard ratio 15.6; p = 0.01), and lack of hydrogen peroxide use (hazard ratio 6.0; p = 0.02). In vitro cell culture analyses found apoptotic nature of hydrogen peroxide induced GCT cell death. Conclusions: The present series proved for the first time that additional cleaning of the tumor cavity with hydrogen peroxide before defect filling significantly reduced recurrence rate and significantly increased recurrence-free survival in advanced but intralesionally treated GCT cases

    Bone morphogenetic proteins − 7 and − 2 in the treatment of delayed osseous union secondary to bacterial osteitis in a rat model

    Get PDF
    Background: Bone infections due to trauma and subsequent delayed or impaired fracture healing represent a great challenge in orthopedics and trauma surgery. The prevalence of such bacterial infection-related types of delayed non-union is high in complex fractures, particularly in open fractures with additional extensive soft-tissue damage. The aim of this study was to establish a rat model of delayed osseous union secondary to bacterial osteitis and investigate the impact of rhBMP-7 and rhBMP-2 on fracture healing in the situation of an ongoing infection. Methods: After randomization to four groups 72 Sprague-Dawley rats underwent a transverse fracture of the midshaft tibia stabilized by intramedullary titanium K-wires. Three groups received an intramedullary inoculation with Staphylococcus aureus (103 colony-forming units) before stabilization and the group without bacteria inoculation served as healing control. After 5 weeks, a second surgery was performed with irrigation of the medullary canal and local rhBMP-7 and rhBMP-2 treatment whereas control group and infected control group received sterile saline. After further 5 weeks rats were sacrificed and underwent biomechanical testing to assess the mechanical stability of the fractured bone. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, and to quantify callus formation and the mineralized area of the callus. Results: Biomechanical testing showed a significantly higher fracture torque in the non-infected control group and the infected rhBMP-7- and rhBMP-2 group compared with the infected control group (p < 0.001). RhBMP-7 and rhBMP-2 groups did not show statistically significant differences (p = 0.57). Histological findings supported improved bone-healing after rhBMP treatment but quantitative micro-CT and histomorphometric results still showed significantly more hypertrophic callus tissue in all three infected groups compared to the non-infected group. Results from a semiquantitative bone-healing-score revealed best bone-healing in the non-infected control group. The expected chronic infection was confirmed in all infected groups. Conclusions: In delayed bone healing secondary to infection rhBMP treatment promotes bone healing with no significant differences in the healing efficacy of rhBMP-2 and rhBMP-7 being noted. Further new therapeutic bone substitutes should be analyzed with the present rat model for delayed osseous union secondary to bacterial osteitis

    Increased bone formation in a rabbit long-bone defect model after single local and single systemic application of erythropoietin

    No full text
    Background and purpose — Delayed bone healing with non-union is a common problem. Further options to increase bone healing together with surgery are needed. We therefore evaluated a 1-dose single application of erythropoietin (EPO), applied either locally to the defect or systemically during surgery, in a critical-size rabbit long-bone defect. Material and methods — 19 New Zealand White rabbits received a 15-mm defect in the radius diaphysis. An absorbable gelatin sponge was soaked with saline (control group and systemic treatment group) or EPO (local treatment group) and implanted into the gap. The systemic treatment group received EPO subcutaneously. In vivo micro-CT analysis was performed 4, 8, and 12 weeks postoperatively. Vascularization was evaluated histologically. Results — Semiquantitative histomorphometric and radiological evaluation showed increased bone formation (2.3- to 2.5-fold) in both treatment groups after 12 weeks compared to the controls. Quantitative determination of bone volume and tissue volume showed superior bone healing after EPO treatment at all follow-up time points, with the highest values after 12 weeks in locally treated animals (3.0- to 3.4-fold). More vascularization was found in both EPO treatment groups. Interpretation — Initial single dosing with EPO was sufficient to increase bone healing substantially after 12 weeks of follow-up. Local application inside the defect was most effective, and it can be administered directly during surgery. Apart from effects on ossification, systemic and local EPO treatment leads to increased callus vascularization

    Is Negative Pressure Wound Therapy with Instillation Suitable for the Treatment of Acute Periprosthetic Hip Joint Infection?

    No full text
    Background: Periprosthetic joint infection (PJI) can be devastating for the patient and demanding for the surgeon. In acute PJI, attempts are made to retain the prosthesis by debridement of the infected tissue, targeted antibiotic therapy and an exchange of modular components with implant retention (DAIR). There has been sparse research with adjunctive negative pressure wound treatment with wound irrigation (NPWTI) on the treatment outcome. Questions/purposes: The goal was to assess the efficacy of our protocol of DAIR with adjunctive NPWTI in acute PJI and to reduce the need for later additional DAIR and Irrigation and Debridement (I and D). Patients and Methods: Our cohort of 30 patients (31 hips) with acute PJI was divided into two groups based on symptom presentation up to 6 weeks or >6 weeks from prior (index) surgery (acute early or acute late groups, respectively). All received DAIR with an exchange of modular components and NPWTI with polyhexanide instillation, with the goal of bacterial elimination and biofilm elimination. Postoperatively, the patients were followed up clinically and radiographically for a mean of 4.3 years. Results: Of the 31 PJI hips, 19 were early acute and 12 were late acute. In total, 21 hips had no evidence of residual infection, 10 required further surgical revision: 1 due to dislocation and 9 due to infection. Of these nine, seven had a removal of all the components and two were treated with irrigation and debridement (I and D), with the demise of one patient from pneumonia shortly after the procedure. The Kaplan–Meier 60-month revision free implant survival from infection was 73.2% (CI: 58.9–91.0%) and at the final follow up, the mean Harris Hip Score (HHS) was 81.1 ± 11.8 and the mean WOMAC score was 33.3 ± 20.1. Conclusions: Our results are in line with those reported in prior studies. However, the utility of our protocol is inconclusive and needs further evaluation based on our small cohort and the lack of a control group. Level of Evidence: IV

    Quality of life, infection control, and complication rates using a novel custom-made articulating hip spacer during two-stage revision for periprosthetic joint infection

    No full text
    Introduction!#!Two-stage revision remains the gold standard treatment for most chronically infected and complex total hip arthroplasty infections. To improve patient outcome and reduce complication rates, we have developed a novel custom-made articulating hip spacer technique and present our short-term results.!##!Materials and methods!#!Between November 2017 and November 2019, 27 patients (mean age 70 years) underwent two-stage revision for periprosthetic joint infection of the hip using the articulating spacer design described here. We retrospectively analyzed spacer-related complications as well as rates for complication, infection control, and implant survivorship after final reimplantation. Furthermore, we prospectively collected patient-reported health-related quality of life (HRQoL) scores prior to spacer implantation, with the spacer and after reimplantation of the new prosthesis.!##!Results!#!An additional round of spacer exchange was performed in two patients (8.3%), persistent wound discharge was the reason in both cases. We had one (4.2%) spacer-related mechanical complication, a dislocation that was treated with closed reduction. After reimplantation, infection control was achieved in 96% with an implant survivorship of 92% after a mean follow-up time of 19 (range 7-32, SD 7.2) months. While the scores for VR-12 MCS, VAS hip pain and patient-reported overall satisfaction significantly improved after first stage surgery, the scores for WOMAC, UCLA and VR-12 PCS significantly improved after second stage surgery.!##!Conclusions!#!Our two-stage approach for periprosthetic joint infection shows high infection eradication and implant survivorship rates at short-term follow-up. Spacer-related complication rates were low, and we achieved high patient satisfaction rates and low pain levels already during the spacer period. To further simplify comparison between different spacer designs, we propose a new hip spacer classification system
    corecore